Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine.
نویسندگان
چکیده
Neurons in ventral pallidum fire to reward and its predictive cues. We tested mesolimbic activation effects on neural reward coding. Rats learned that a Pavlovian conditioned stimulus (CS+1 tone) predicted a second conditioned stimulus (CS+2 feeder click) followed by an unconditioned stimulus (UCS sucrose reward). Some rats were sensitized to amphetamine after training. Electrophysiological activity of ventral pallidal neurons to stimuli was later recorded under the influence of vehicle or acute amphetamine injection. Both sensitization and acute amphetamine increased ventral pallidum firing at CS+2 (population code and rate code). There were no changes at CS+1 and minimal changes to UCS. With a new 'Profile Analysis', we show that mesolimbic activation by sensitization/amphetamine incrementally shifted neuronal firing profiles away from prediction signal coding (maximal at CS+1) and toward incentive coding (maximal at CS+2), without changing hedonic impact coding (maximal at UCS). This pattern suggests mesolimbic activation specifically amplifies a motivational transform of CS+ predictive information into incentive salience coded by ventral pallidal neurons. Our results support incentive-sensitization predictions and suggest why cues temporally proximal to drug presentation may precipitate cue-triggered relapse in human addicts.
منابع مشابه
Cortical cholinergic transmission and cortical information processing in schizophrenia.
Models of the neuronal mediation of psychotic symptoms traditionally have focused on aberrations in the regulation of mesolimbic dopaminergic neurons, via their telencephalic afferent connections, and on the impact of abnormal mesolimbic activity for functions of the ventral striatum and its pallidal-thalamic-cortical efferent circuitry. Repeated psychostimulant exposure models major aspects of...
متن کاملAmphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization.
The repeated administration of psychostimulants induces an enhanced behavioral response to a subsequent drug challenge. This behavioral sensitization is proposed to model the increased drug craving observed in human psychostimulant abusers. Using in vivo extracellular recordings from identified ventral tegmental area dopamine (DA) neurons, we report that amphetamine-sensitized rats display an a...
متن کاملIP3 receptor sensitization during in vivo amphetamine experience enhances NMDA receptor plasticity in dopamine neurons of the ventral tegmental area.
Synaptic plasticity in the mesolimbic dopamine (DA) system is critically involved in reward-based conditioning and the development of drug addiction. Ca2+ signals triggered by postsynaptic action potentials (APs) drive the induction of synaptic plasticity in the CNS. However, it is not clear how AP-evoked Ca2+ signals and the resulting synaptic plasticity are altered during in vivo exposure to ...
متن کاملComputational Models of Incentive-Sensitization in Addiction: Dynamic Limbic Transformation of Learning into Motivation
Incentive salience is a motivational magnet property attributed to rewardpredicting conditioned stimuli (cues). This property makes the cue and its associated unconditioned reward ‘wanted’ at that moment, and pulls an individual’s behavior towards those stimuli. The incentive-sensitization theory of addiction posits that permanent changes in brain mesolimbic systems in drug addicts can amplify ...
متن کاملLiking, wanting, and the incentive-sensitization theory of addiction.
Rewards are both "liked" and "wanted," and those 2 words seem almost interchangeable. However, the brain circuitry that mediates the psychological process of "wanting" a particular reward is dissociable from circuitry that mediates the degree to which it is "liked." Incentive salience or "wanting," a form of motivation, is generated by large and robust neural systems that include mesolimbic dop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2005